Spatial capture-recapture

Closed spatial capture-recapture models in PyMC
Author
Affiliations

Philip T. Patton

Marine Mammal Research Program

Hawaiʻi Institute of Marine Biology

Published

November 25, 2024

In this notebook, I show how to train spatial capture-recapture (SCR) models in PyMC. SCR expands upon traditional capture-recapture by incorporating the location of the traps in the analysis. This matters because, typically, animals that live near a particular trap are more likely to be caught in it. In doing so, SCR links individual-level processes to the population-level, expanding the scientific scope of simple designs.

In this notebook, I train the simplest possible SCR model, SCR0 (Royle et al. 2013, chap. 5), where the goal is estimating the true population size \(N\). Similar to the other closed population notebooks, I do so using parameter-expanded data-augmentation (PX-DA). I also borrow the concept of the detection function from the distance sampling notebook.

As a motivating example, I use the ovenbird mist netting dataset provided by Murray Efford via the secr package in R. The design of the study is outlined in Efford, Dawson, and Robbins (2004) and Borchers and Efford (2008). In this dataset, ovenbirds were trapped in 44 mist nets over 8 to 10 consecutive days during the summers of 2005 to 2009.

import seaborn as sns
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import pytensor.tensor as pt 
import pymc as pm
import arviz as az
from pymc.distributions.dist_math import binomln, logpow

# hyper parameters
SEED = 42
RNG = np.random.default_rng(SEED)
BUFFER = 100
M = 200

# plotting defaults
plt.rcParams['figure.dpi'] = 600
plt.style.use('fivethirtyeight')
plt.rcParams['axes.facecolor'] = 'white'
plt.rcParams['figure.facecolor'] = 'white'
plt.rcParams['axes.spines.left'] = False
plt.rcParams['axes.spines.right'] = False
plt.rcParams['axes.spines.top'] = False
plt.rcParams['axes.spines.bottom'] = False
sns.set_palette("tab10")

def invlogit(x):
    '''Inverse logit function'''
    return 1 / (1 + np.exp(-x))

def euclid_dist(X, S, library='np'):
    '''Pairwise euclidian distance between points in (M, 2) and (N, 2) arrays'''
    diff = X[np.newaxis, :, :] - S[:, np.newaxis, :]
    
    if library == 'np':
        return np.sqrt(np.sum(diff ** 2, axis=-1))
        
    elif library == 'pm': 
        return pm.math.sqrt(pm.math.sum(diff ** 2, axis=-1))

def half_normal(d, s, library='np'):
    '''Half normal detection function.'''
    if library == 'np':
        return np.exp( - (d ** 2) / (2 * s ** 2))
        
    elif library == 'pm':
        return pm.math.exp( - (d ** 2) / (2 * s ** 2))

def exponential(d, s, library='np'):
    '''Negative exponential detection function.'''    
    if library == 'np':
        return np.exp(- d / s)
        
    elif library == 'pm':
        return pm.math.exp(- d / s)

# coordinates for each trap 
ovenbird_trap = pd.read_csv('ovenbirdtrap.txt', delimiter=' ')
trap_count, _ = ovenbird_trap.shape

# information about each trap 
trap_x = ovenbird_trap.x
trap_y = ovenbird_trap.y
X = ovenbird_trap[['x', 'y']].to_numpy()

# define the state space around the traps
x_max = trap_x.max() + BUFFER
y_max = trap_y.max() + BUFFER
x_min = trap_x.min() - BUFFER
y_min = trap_y.min() - BUFFER

# scale for plotting
scale = (y_max - y_min) / (x_max - x_min)

# plot the trap locations
plot_width = 2
plot_height = plot_width * scale
fig, ax = plt.subplots(figsize=(plot_width, plot_height))

# plot the traps
ax.scatter(trap_x, trap_y, marker='x', s=40, linewidth=1.5, color='C1')
ax.set_ylim((y_min, y_max))
ax.set_xlim((x_min, x_max))

ax.annotate(
    '44 nets\n30m apart', ha='center',
    xy=(55, -150), xycoords='data', color='black',
    xytext=(40, 30), textcoords='offset points',
    arrowprops=dict(arrowstyle="->", color='black', linewidth=1,
                    connectionstyle="angle3,angleA=90,angleB=0"))

# aesthetics 
ax.set_title('Mist net locations')
ax.grid(False)
plt.show()
Figure 1: Locations of the mist nets in the ovenbird dataset (Efford, Dawson, and Robbins 2004)

One difference between spatial and traditional (non-spatial) capture is the addition of the trap identifier in the capture history. Whereas a traditional capture history is [individual, occasion], a spatial capture history might be [individual, occasion, trap].

In the ovenbird example, I ignore the year dimension, pooling parameters across years, which allows for better estimation of the detection parameters. My hack for doing so is treating every band/year combination as a unique individual in a combined year capture history. This is easy to implement, creates an awkward interpretation of \(N\) (see below).

# ovenbird capture history
oven_ch = pd.read_csv('ovenbirdcapt.txt', delimiter=' ')

# create a unique bird/year identifier for each individual
oven_ch['ID'] = oven_ch.groupby(['Year','Band']).ngroup()
occasion_count = oven_ch.Day.max()

# merge the datasets, making sure that traps with no detections are included 
ovenbird = (
    ovenbird_trap.merge(oven_ch[['ID', 'Net', 'Day']], how='left')
      [['ID', 'Day', 'Net', 'x', 'y']]
      .sort_values('ID')
      .reset_index(drop=True)
)

ovenbird.head(10)
ID Day Net x y
0 0.0 1.0 2 -50.0 -255.0
1 1.0 9.0 20 -50.0 285.0
2 1.0 1.0 15 -50.0 135.0
3 2.0 6.0 17 -50.0 195.0
4 2.0 9.0 27 49.0 165.0
5 2.0 1.0 15 -50.0 135.0
6 2.0 1.0 14 -50.0 105.0
7 3.0 1.0 41 49.0 -255.0
8 3.0 3.0 39 49.0 -195.0
9 3.0 1.0 42 49.0 -285.0

Simulation

Before estimating the parameters, I perform a small simulation. The simulation starts with a core idea of SCR: the activity center. The activity center \(\mathbf{s}_i\) is the most likely place that you’d find an individual \(i\) over the course of the trapping study. In this case, I assume that activity centers are uniformly distributed across the sample space.

I compute the probability of detection for individual \(i\) at trap \(j\) as \(p_{i,j}=g_0 \exp(-d_{i,j}^2/2\sigma^2),\) where \(g_0\) is the probability of detecting an individual when it’s activity center is at the trap, \(d_{i,j}\) is the euclidean distance between the trap and the activity center, and \(\sigma\) is the detection range parameter.

# true population size
N = 150

# simulate activity centers
sx_true = RNG.uniform(x_min, x_max, N)
sy_true = RNG.uniform(y_min, y_max, N)
S_true = np.column_stack((sx_true, sy_true))

# true distance between the trap and the activity centers
d_true = euclid_dist(X, S_true)

# detection parameters
g0_true = 0.025     
sigma_true = 73     

# simulate the number of captures at each trap for each individual
capture_probability = g0_true * half_normal(d_true, sigma_true)
sim_Y = RNG.binomial(occasion_count, capture_probability)

# filter out undetected individuals
was_detected = sim_Y.sum(axis=1) > 0
sim_Y_det = sim_Y[was_detected]
n_detected = int(was_detected.sum())

Following Royle et al. (2013), Chapter 5, I first fit the version of the model where we assume that we know the true population size. In this case, I’m only estimating the detection parameters and the activity center locations.

# upper bound for the uniform prior on sigma
U_SIGMA = 150

with pm.Model() as known:

    # priors for the activity centers
    sx = pm.Uniform('sx', x_min, x_max, shape=n_detected)
    sy = pm.Uniform('sy', y_min, y_max, shape=n_detected)
    S = pt.stack([sx, sy], axis=1)

    # priors for the detection parameters
    g0 = pm.Uniform('g0', 0, 1)
    sigma = pm.Uniform('sigma', 0, U_SIGMA)
    
    # probability of capture for each individual at each trap
    distance = euclid_dist(X, S, 'pm')
    p = pm.Deterministic('p', g0 * half_normal(distance, sigma))

    # likelihood
    pm.Binomial(
        'y',
        p=p,
        n=occasion_count,
        observed=sim_Y_det
    )

pm.model_to_graphviz(known)
Figure 2: Visual representation of the model where \(N\) is known.
with known:
    known_idata = pm.sample()
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [sx, sy, g0, sigma]
Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 28 seconds.

az.summary(known_idata, var_names=['g0', 'sigma'])
mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail r_hat
g0 0.034 0.004 0.027 0.041 0.000 0.000 1732.0 2543.0 1.0
sigma 78.852 5.207 69.422 88.756 0.162 0.114 1027.0 1729.0 1.0
az.plot_trace(
    known_idata, 
    var_names=['g0', 'sigma'],
    figsize=(8,4),
    lines=[("g0", {}, [g0_true]), ("sigma", {}, [sigma_true])] 
);
Figure 3: Trace plots for model where \(N\) is known. The true parameter values are shown by vertical and horizontal lines.

The trace plots show reasonable agreement between the true parameter values and the estimated values, although \(g_0\) appears to be overestimated.

Ovenbird density

Now, I estimate the density \(D\) for the ovenbird population. Like distance sampling, SCR can robustly estimate the density of the population, regardless of the size of the state space. The difference between the model above and this one is that we use PX-DA to estimate the inclusion probability \(\psi,\) and subsequently \(N.\) First, I convert the DataFrame to a (n_detected, n_traps) array of binomial counts.

def get_Y(ch):
    '''Get a (individual_count, trap_count) array of detections.'''

    # count the number of detections per individual per trap
    detection_counts = pd.crosstab(ch.ID, ch.Net, dropna=False)

    # remove the ghost nan individual 
    detection_counts = detection_counts.loc[~detection_counts.index.isna()]
    
    Y = detection_counts.to_numpy()
    return Y

Y = get_Y(ovenbird)
detected_count, trap_count = Y.shape

# augmented spatial capture histories with all zero histories
all_zero_history = np.zeros((M - detected_count, trap_count))
Y_augmented = np.row_stack((Y, all_zero_history))

Similar to the occupancy notebook, I use a custom distribution to model the zero-inflated data. This is necessary because the zero inflation happens at the individual (row) level. This is, in fact, the same distribution as the occupancy model, although including the binomial coefficient.

def logp(value, n, p, psi):
    
    binom = binomln(n, value) + logpow(p, value) + logpow(1 - p, n - value)
    bin_sum = pm.math.sum(binom, axis=1)
    bin_exp = pm.math.exp(bin_sum)

    res = pm.math.switch(
        value.sum(axis=1) > 0,
        bin_exp * psi,
        bin_exp * psi + (1 - psi)
    )
    
    return pm.math.log(res)

with pm.Model() as oven:

    # Priors
    # activity centers
    sx = pm.Uniform('sx', x_min, x_max, shape=M)
    sy = pm.Uniform('sy', y_min, y_max, shape=M)
    S = pt.stack([sx, sy], axis=1)

    # capture parameters
    g0 = pm.Uniform('g0', 0, 1, initval=0.05)
    sigma = pm.Uniform('sigma', 0, U_SIGMA)

    # inclusion probability 
    psi = pm.Beta('psi', 0.001, 1)

    # compute the capture probability 
    distance = euclid_dist(X, S, 'pm')
    p = pm.Deterministic('p', g0 * half_normal(distance, sigma))

    # likelihood 
    pm.CustomDist(
        'y',
        occasion_count,
        p,
        psi,
        logp=logp,
        observed=Y_augmented
    )

pm.model_to_graphviz(oven)
Figure 4: Visual representation of the ovenbird model using data augmentation.
with oven:
    oven_idata = pm.sample()
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [sx, sy, g0, sigma, psi]
Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 54 seconds.

az.summary(oven_idata, var_names=['g0', 'sigma', 'psi'])
mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail r_hat
g0 0.029 0.004 0.022 0.037 0.000 0.000 1944.0 2922.0 1.0
sigma 71.180 4.617 62.580 79.889 0.161 0.114 832.0 1567.0 1.0
psi 0.701 0.056 0.595 0.806 0.001 0.001 3564.0 2432.0 1.0
g0_mle = [0.025]
sigma_mle = [73]

az.plot_trace(
    oven_idata, 
    var_names=['g0', 'sigma'],
    figsize=(8,4),
    lines=[("g0", {}, [g0_mle]), ("sigma", {}, [sigma_mle])] 
);
Figure 5: Trace plots for the ovenbird model using data augmentation. Maximum likelihood estimates are shown by vertical and horizontal lines.

The estimates are quite close to the maximum likelihood estimates, which I estimated using the secr package in R.

Finally, I estimate density \(D\) using the results. As in the closed capture-recapture and distance sampling notebooks, I use the posterior samples of \(\psi\) and \(M\) to sample the posterior of \(N.\) This \(N,\) however, has an awkward interpretation because I pooled across the years by combining all the detection histories. To get around this, I compute the average annual abundance by dividing by the total number of years in the sample. Then, I divide by the area of the state space.

def sim_N(idata, n, K):

    psi_samps = az.extract(idata).psi.to_numpy()
    p_samps = az.extract(idata).p
    p_samps_undet = p_samps[n:, :, :]
    
    bin_probs = (1 - p_samps_undet) ** K
    bin_prod = bin_probs.prod(axis=1)
    p_included = (bin_prod * psi_samps) / (bin_prod * psi_samps  + (1 - psi_samps))
    
    number_undetected = RNG.binomial(1, p_included).sum(axis=0)
    N_samps = n + number_undetected

    return N_samps
N_samps = sim_N(oven_idata, detected_count, occasion_count)

# kludgy way of calculating avergage abundance 
year_count = 5
average_annual_abundance = N_samps // year_count

# area of the state space in terms of hectares 
ha = 100 * 100
mask_area = (x_max - x_min) * (y_max - y_min) / ha

# density 
D_samples = average_annual_abundance / mask_area 
D_mle = 1.262946

fig, ax = plt.subplots(figsize=(4,4))
ax.hist(D_samples, edgecolor='white', bins=13)
ax.axvline(D_mle, linestyle='--',color='C1')
ax.set_xlabel('Ovenbirds per hectare')
ax.set_ylabel('Number of samples')
ax.text(1.4, 800, rf'$\hat{{D}}$={D_samples.mean():.2f}', va='bottom', ha='left')
plt.show()
Figure 6: Posterior distribution of the density \(D\) of ovenbirds. The maximum likelihood estimate is shown by the dotted red line.

Sometimes, the location of the activity centers is of interest. Below, I plot the posterior median for the activity centers for the detected individuals,

sx_samps = az.extract(oven_idata).sx
sy_samps = az.extract(oven_idata).sy

sx_mean = np.median(sx_samps[:detected_count], axis=1)
sy_mean = np.median(sy_samps[:detected_count], axis=1)

# plot the trap locations
plot_width = 3 
plot_height = plot_width * scale
fig, ax = plt.subplots(figsize=(plot_width, plot_height))

# plot the traps
ax.scatter(trap_x, trap_y, marker='x', s=40, linewidth=1.5, color='C1')
ax.set_ylim((y_min, y_max))
ax.set_xlim((x_min, x_max))

# plot the mean activity centers
ax.scatter(sx_mean, sy_mean, marker='o', s=4, color='C0')

# aesthetics 
ax.set_title('Estimated activity centers')
ax.grid(False)
Figure 7: Estimated activity centers for the detected individuals

We can also look at the uncertainty around those estimates. Below, I plot the posterior distribution of the activity centers for two individuals.

one = 49
sx1 = sx_samps[one]
sy1 = sy_samps[one]

two = 2
sx2 = sx_samps[two]
sy2 = sy_samps[two]

fig, ax = plt.subplots(figsize=(plot_width, plot_height))

# plot the traps
ax.scatter(trap_x, trap_y, marker='x', s=40, linewidth=1.5, color='C1')
ax.set_ylim((y_min, y_max))
ax.set_xlim((x_min, x_max))

# plot the distributions of the activity centers
ax.scatter(sx1, sy1, marker='o', s=1, color='C0', alpha=0.2)
ax.scatter(sx2, sy2, marker='o', s=1, color='C0', alpha=0.2)

# plot the mean
ax.scatter(sx1.mean(), sy1.mean(), marker='o', s=20, color='C0')
ax.scatter(sx2.mean(), sy2.mean(), marker='o', s=20, color='C0')

# add the label
ax.text(sx1.mean(), sy1.mean() + 5, f'{one}', ha='center', va='bottom')
ax.text(sx2.mean(), sy2.mean() + 5, f'{two}', ha='center', va='bottom')

# aesthetics 
ax.set_title('Posterior of two activity centers')
ax.grid(False)
plt.show()
Figure 8: Posterior distributions for two activity centers.

Finally, I plot the posterior distribution of the detection function.

xx = np.arange(BUFFER * 2)

sigma_samps = az.extract(oven_idata).sigma.values.flatten()
g0_samps = az.extract(oven_idata).g0.values.flatten()

p_samps = np.array(
    [g * half_normal(xx, s) for g, s in zip(g0_samps, sigma_samps)]
)

p_mean = p_samps.mean(axis=0)
p_low = np.quantile(p_samps, 0.02, axis=0)
p_high = np.quantile(p_samps, 0.98, axis=0)

fig, ax = plt.subplots(figsize=(5,4))

ax.plot(xx, p_mean, '-')
ax.fill_between(xx, p_low, p_high, alpha=0.2)

ax.set_title('Detection function')
ax.set_ylabel(r'$p$')
ax.set_xlabel(r'Distance (m)')

plt.show()
Figure 9: Posterior distribution for the detection function. The line represents the posterior mean while the shaded area is the 96% interval.
%load_ext watermark

%watermark -n -u -v -iv -w 
Last updated: Mon Nov 25 2024

Python implementation: CPython
Python version       : 3.12.7
IPython version      : 8.29.0

numpy     : 1.26.4
pandas    : 2.2.3
pytensor  : 2.26.3
matplotlib: 3.9.2
pymc      : 5.18.2
seaborn   : 0.13.2
arviz     : 0.20.0

Watermark: 2.5.0

References

Borchers, David L, and MG2432407 Efford. 2008. “Spatially Explicit Maximum Likelihood Methods for Capture–Recapture Studies.” Biometrics 64 (2): 377–85.
Efford, Murray G, Deanna K Dawson, and Chandler S Robbins. 2004. “DENSITY: Software for Analysing Capture-Recapture Data from Passive Detector Arrays.” Animal Biodiversity and Conservation 27 (1): 217–28.
Royle, J Andrew, Richard B Chandler, Rahel Sollmann, and Beth Gardner. 2013. Spatial Capture-Recapture. Academic press.