# ovenbird capture history
oven_ch = pd.read_csv('ovenbirdcapt.txt', delimiter=' ')
# create a unique bird/year identifier for each individual
oven_ch['ID'] = oven_ch.groupby(['Year','Band']).ngroup()
occasion_count = oven_ch.Day.max()
# merge the datasets, making sure that traps with no detections are included
ovenbird = (
ovenbird_trap.merge(oven_ch[['ID', 'Net', 'Day']], how='left')
[['ID', 'Day', 'Net', 'x', 'y']]
.sort_values('ID')
.reset_index(drop=True)
)
ovenbird.head(10)Spatial capture-recapture
In this notebook, I show how to train spatial capture-recapture (SCR) models in PyMC. SCR expands upon traditional capture-recapture by incorporating the location of the traps in the analysis. This matters because, typically, animals that live near a particular trap are more likely to be caught in it. In doing so, SCR links individual-level processes to the population-level, expanding the scientific scope of simple designs.
In this notebook, I train the simplest possible SCR model, SCR0 (Royle et al. 2013, chap. 5), where the goal is estimating the true population size \(N\). Similar to the other closed population notebooks, I do so using parameter-expanded data-augmentation (PX-DA). I also borrow the concept of the detection function from the distance sampling notebook.
As a motivating example, I use the ovenbird mist netting dataset provided by Murray Efford via the secr package in R. The design of the study is outlined in Efford, Dawson, and Robbins (2004) and Borchers and Efford (2008). In this dataset, ovenbirds were trapped in 44 mist nets over 8 to 10 consecutive days during the summers of 2005 to 2009.
%config InlineBackend.figure_format = 'retina'
import arviz as az
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pymc as pm
import pymc_extras as pmx
import pytensor.tensor as pt
import seaborn as sns
# only necessary on MacOS Sequoia
# https://discourse.pymc.io/t/pytensor-fails-to-compile-model-after-upgrading-to-mac-os-15-4/16796/5
import pytensor
pytensor.config.cxx = '/usr/bin/clang++'
# hyper parameters
SEED = 42
RNG = np.random.default_rng(SEED)
BUFFER = 100
M = 200
# plotting defaults
plt.style.use('fivethirtyeight')
plt.rcParams['axes.facecolor'] = 'white'
plt.rcParams['figure.facecolor'] = 'white'
plt.rcParams['axes.spines.left'] = False
plt.rcParams['axes.spines.right'] = False
plt.rcParams['axes.spines.top'] = False
plt.rcParams['axes.spines.bottom'] = False
sns.set_palette("tab10")
def invlogit(x):
'''Inverse logit function'''
return 1 / (1 + np.exp(-x))
def euclid_dist(X, S, library='np'):
'''Pairwise euclidian distance between points in (M, 2) and (N, 2) arrays'''
diff = X[np.newaxis, :, :] - S[:, np.newaxis, :]
if library == 'np':
return np.sqrt(np.sum(diff ** 2, axis=-1))
elif library == 'pm':
return pm.math.sqrt(pm.math.sum(diff ** 2, axis=-1))
def half_normal(d, s, library='np'):
'''Half normal detection function.'''
if library == 'np':
return np.exp( - (d ** 2) / (2 * s ** 2))
elif library == 'pm':
return pm.math.exp( - (d ** 2) / (2 * s ** 2))
def exponential(d, s, library='np'):
'''Negative exponential detection function.'''
if library == 'np':
return np.exp(- d / s)
elif library == 'pm':
return pm.math.exp(- d / s)
# coordinates for each trap
ovenbird_trap = pd.read_csv('ovenbirdtrap.txt', delimiter=' ')
trap_count, _ = ovenbird_trap.shape
# information about each trap
trap_x = ovenbird_trap.x
trap_y = ovenbird_trap.y
X = ovenbird_trap[['x', 'y']].to_numpy()
# define the state space around the traps
x_max = trap_x.max() + BUFFER
y_max = trap_y.max() + BUFFER
x_min = trap_x.min() - BUFFER
y_min = trap_y.min() - BUFFER
# scale for plotting
scale = (y_max - y_min) / (x_max - x_min)
# plot the trap locations
plot_width = 2
plot_height = plot_width * scale
fig, ax = plt.subplots(figsize=(plot_width, plot_height))
# plot the traps
ax.scatter(trap_x, trap_y, marker='x', s=40, linewidth=1.5, color='C1')
ax.set_ylim((y_min, y_max))
ax.set_xlim((x_min, x_max))
ax.annotate(
'44 nets\n30m apart', ha='center',
xy=(55, -150), xycoords='data', color='black',
xytext=(40, 30), textcoords='offset points',
arrowprops=dict(arrowstyle="->", color='black', linewidth=1,
connectionstyle="angle3,angleA=90,angleB=0"))
# aesthetics
ax.set_aspect('equal')
ax.set_title('Mist net locations')
ax.grid(False)
plt.show()One difference between spatial and traditional (non-spatial) capture is the addition of the trap identifier in the capture history. Whereas a traditional capture history is [individual, occasion], a spatial capture history might be [individual, occasion, trap].
In the ovenbird example, I ignore the year dimension, pooling parameters across years, which allows for better estimation of the detection parameters. My hack for doing so is treating every band/year combination as a unique individual in a combined year capture history. This is easy to implement, creates an awkward interpretation of \(N\) (see below).
Simulation
Before estimating the parameters, I perform a small simulation. The simulation starts with a core idea of SCR: the activity center. The activity center \(\mathbf{s}_i\) is the most likely place that you’d find an individual \(i\) over the course of the trapping study. In this case, I assume that activity centers are uniformly distributed across the sample space.
I compute the probability of detection for individual \(i\) at trap \(j\) as \(p_{i,j}=g_0 \exp(-d_{i,j}^2/2\sigma^2),\) where \(g_0\) is the probability of detecting an individual when it’s activity center is at the trap, \(d_{i,j}\) is the euclidean distance between the trap and the activity center, and \(\sigma\) is the detection range parameter.
# true population size
N = 150
# simulate activity centers
S_true = RNG.uniform((x_min, y_min), (x_max, y_max), (N, 2))
# true distance between the trap and the activity centers
d_true = euclid_dist(X, S_true)
# detection parameters
g0_true = 0.025
sigma_true = 73
# simulate the number of captures at each trap for each individual
capture_probability = g0_true * half_normal(d_true, sigma_true)
sim_Y = RNG.binomial(occasion_count, capture_probability)
# filter out undetected individuals
was_detected = sim_Y.sum(axis=1) > 0
sim_Y_det = sim_Y[was_detected]
n_detected = int(was_detected.sum())Following Royle et al. (2013), Chapter 5, I first fit the version of the model where we assume that we know the true population size. In this case, I’m only estimating the detection parameters and the activity center locations.
# upper bound for the uniform prior on sigma
U_SIGMA = 150
with pm.Model() as known:
# priors for the activity centers
S = pm.Uniform('S', (x_min, y_min), (x_max, y_max), shape=(n_detected, 2))
# priors for the detection parameters
g0 = pm.Uniform('g0', 0, 1)
sigma = pm.Uniform('sigma', 0, U_SIGMA)
# probability of capture for each individual at each trap
distance = euclid_dist(X, S, 'pm')
p = pm.Deterministic('p', g0 * half_normal(distance, sigma))
# likelihood
pm.Binomial(
'y',
p=p,
n=occasion_count,
observed=sim_Y_det
)
pm.model_to_graphviz(known)with known:
known_idata = pm.sample(nuts_sampler='nutpie')az.summary(known_idata, var_names=['g0', 'sigma'])az.plot_trace(
known_idata,
var_names=['g0', 'sigma'],
figsize=(8,4),
lines=[("g0", {}, [g0_true]), ("sigma", {}, [sigma_true])]
);The trace plots show reasonable agreement between the true parameter values and the estimated values, although \(g_0\) appears to be overestimated.
Ovenbird density
Now, I estimate the density \(D\) for the ovenbird population. Like distance sampling, SCR can robustly estimate the density of the population, regardless of the size of the state space. The difference between the model above and this one is that we use PX-DA to estimate the inclusion probability \(\psi,\) and subsequently \(N.\) First, I convert the DataFrame to a (n_detected, n_traps) array of binomial counts.
def get_Y(ch):
'''Get a (individual_count, trap_count) array of detections.'''
# count the number of detections per individual per trap
detection_counts = pd.crosstab(ch.ID, ch.Net, dropna=False)
# remove the ghost nan individual
detection_counts = detection_counts.loc[~detection_counts.index.isna()]
Y = detection_counts.to_numpy()
return Y
Y = get_Y(ovenbird)
detected_count, trap_count = Y.shape
# augmented spatial capture histories with all zero histories
all_zero_history = np.zeros((M - detected_count, trap_count))
Y_augmented = np.vstack((Y, all_zero_history))As with the other closed models in this series, I will write the model in terms of the latent inclusion state \(z_i\). Interestingly, .
with pm.Model() as oven:
# Priors
# activity centers
S = pm.Uniform('S', (x_min, y_min), (x_max, y_max), shape=(M, 2))
# capture parameters
g0 = pm.Uniform('g0', 0, 1)
sigma = pm.Uniform('sigma', 0, U_SIGMA)
# inclusion probability
psi = pm.Beta('psi', 0.001, 1)
# compute the capture probability
distance = euclid_dist(X, S, 'pm')
p = pm.Deterministic('p', g0 * half_normal(distance, sigma))
# inclusion state
z = pm.Bernoulli('z', psi, shape=M)
# likelihood
mu_y = z[:, None] * p
pm.Binomial('y', p=mu_y, n=occasion_count, observed=Y_augmented)
pm.model_to_graphviz(oven)oven_marginal = pmx.marginalize(oven, ['z'])
with oven_marginal:
oven_idata = pm.sample(nuts_sampler='nutpie')az.summary(oven_idata, var_names=['g0', 'sigma', 'psi'])g0_mle = [0.025]
sigma_mle = [73]
az.plot_trace(
oven_idata,
var_names=['g0', 'sigma'],
figsize=(8,4),
lines=[("g0", {}, [g0_mle]), ("sigma", {}, [sigma_mle])]
);The estimates are quite close to the maximum likelihood estimates, which I estimated with the secr package in R.
Finally, I estimate density \(D\) using the results. As in the closed capture-recapture and distance sampling notebooks, I use the posterior samples of \(\psi\) and \(M\) to sample the posterior of \(N.\) This \(N,\) however, has an awkward interpretation because I pooled across the years by combining all the detection histories. To get around this, I compute the average annual abundance by dividing by the total number of years in the sample. Then, I divide by the area of the state space.
def sim_N(idata, n, K):
psi_samps = az.extract(idata).psi.to_numpy()
p_samps = az.extract(idata).p
p_samps_undet = p_samps[n:, :, :]
bin_probs = (1 - p_samps_undet) ** K
bin_prod = bin_probs.prod(axis=1)
p_included = (bin_prod * psi_samps) / (bin_prod * psi_samps + (1 - psi_samps))
number_undetected = RNG.binomial(1, p_included).sum(axis=0)
N_samps = n + number_undetected
return N_sampsN_samps = sim_N(oven_idata, detected_count, occasion_count)
# kludgy way of calculating avergage abundance
year_count = 5
average_annual_abundance = N_samps // year_count
# area of the state space in terms of hectares
ha = 100 * 100
mask_area = (x_max - x_min) * (y_max - y_min) / ha
# density
D_samples = average_annual_abundance / mask_area
D_mle = 1.262946
fig, ax = plt.subplots(figsize=(4,4))
ax.hist(D_samples, edgecolor='white', bins=13)
ax.axvline(D_mle, linestyle='--',color='C1')
ax.set_xlabel('Ovenbirds per hectare')
ax.set_ylabel('Number of samples')
ax.text(1.4, 800, rf'$\hat{{D}}$={D_samples.mean():.2f}', va='bottom', ha='left')
plt.show()Sometimes, the location of the activity centers is of interest. Below, I plot the posterior median for the activity centers for the detected individuals.
s_samps = az.extract(oven_idata).S
s_mean = np.median(s_samps[:detected_count], axis=2)
# plot the trap locations
plot_width = 3
plot_height = plot_width * scale
fig, ax = plt.subplots(figsize=(plot_width, plot_height))
# plot the traps
ax.scatter(trap_x, trap_y, marker='x', s=40, linewidth=1.5, color='C1')
ax.set_ylim((y_min, y_max))
ax.set_xlim((x_min, x_max))
# plot the mean activity centers
ax.scatter(s_mean[:, 0], s_mean[:, 1], marker='o', s=4, color='C0')
# aesthetics
ax.set_aspect('equal')
ax.set_title('Estimated activity centers')
ax.grid(False)We can also look at the uncertainty around those estimates. Below, I plot the posterior distribution of the activity centers for two individuals.
one = 49
one_samps = s_samps[one]
two = 2
two_samps = s_samps[two]
fig, ax = plt.subplots(figsize=(plot_width, plot_height))
# plot the traps
ax.scatter(trap_x, trap_y, marker='x', s=40, linewidth=1.5, color='tab:cyan')
ax.set_ylim((y_min, y_max))
ax.set_xlim((x_min, x_max))
# plot the distributions of the activity centers
ax.scatter(one_samps[0], one_samps[1], marker='o', s=1, color='tab:pink', alpha=0.4)
ax.scatter(two_samps[0], two_samps[1], marker='o', s=1, color='tab:purple', alpha=0.4)
# plot the mean
ax.scatter(one_samps[0].mean(), one_samps[1].mean(), marker='o', s=40, color='w')
ax.scatter(two_samps[0].mean(), two_samps[1].mean(), marker='o', s=40, color='w')
# add the label
ax.text(one_samps[0].mean(), one_samps[1].mean() + 5, f'{one}', ha='center', va='bottom')
ax.text(two_samps[0].mean(), two_samps[1].mean() + 5, f'{two}', ha='center', va='bottom')
# aesthetics
ax.set_aspect('equal')
ax.set_title('Posterior of two activity centers')
ax.grid(False)
plt.show()Finally, I plot the posterior distribution of the detection function.
xx = np.arange(BUFFER * 2)
sigma_samps = az.extract(oven_idata).sigma.values.flatten()
g0_samps = az.extract(oven_idata).g0.values.flatten()
p_samps = np.array(
[g * half_normal(xx, s) for g, s in zip(g0_samps, sigma_samps)]
)
p_mean = p_samps.mean(axis=0)
p_low = np.quantile(p_samps, 0.02, axis=0)
p_high = np.quantile(p_samps, 0.98, axis=0)
fig, ax = plt.subplots(figsize=(5,4))
ax.plot(xx, p_mean, '-')
ax.fill_between(xx, p_low, p_high, alpha=0.2)
ax.set_title('Detection function')
ax.set_ylabel(r'$p$')
ax.set_xlabel(r'Distance (m)')
plt.show()%load_ext watermark
%watermark -n -u -v -iv -w