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96744, USA. Email: pattonp@hawaii.edu

Article impact statement: Researchers can use
high-performance identification algorithms to
reduce the cost of population assessments without
biasing abundance estimates.

Funding information

Cooperative Ecosystem Studies Unit; NOAA
Fisheries Quantitative Ecology and Socioeconomic
Training Program

Abstract

Several legal acts mandate that management agencies regularly assess biological popula-
tions. For species with distinct markings, these assessments can be conducted noninvasively
via capture-recapture and photographic identification (photo-ID), which involves pro-
cessing considerable quantities of photographic data. To ease this burden, agencies
increasingly rely on automated identification (ID) algorithms. Identification algorithms
present agencies with an opportunity—reducing the cost of population assessments—and
a challenge—propagating misidentifications into abundance estimates at a large scale. We
explored several strategies for generating capture histories with an ID algorithm, evaluating
trade-offs between labor costs and estimation error in a hypothetical population assess-
ment. To that end, we conducted a simulation study informed by 39 photo-ID datasets
representing 24 cetacean species. We fed the results into a custom optimization tool to
discern the optimal strategy for each dataset. Our strategies included choosing between
truly and partially automated photo-ID and, in the case of the latter, choosing the num-
ber of suggested matches to inspect. True automation was optimal for datasets for which
the algorithm identified individuals well. As identification performance declined, the opti-
mization recommended that users inspect more suggested matches from the ID algorithm,
particularly for small datasets. False negatives (i.e., individual was resighted but erroneously
marked as a first capture) strongly predicted estimation error. A 2% increase in the false
negative rate translated to a 5% increase in the relative bias in abundance estimates. Our
framework can be used to estimate expected error of the abundance estimate, project labor
effort, and find the optimal strategy for a dataset and algorithm. We recommend estimating
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a strategy’s false negative rate before implementing the strategy in a population assessment.
Our framework provides organizations with insights into the conservation benefits and
consequences of automation as conservation enters a new era of artificial intelligence for
population assessments.

KEYWORDS

artificial intelligence, capture-recapture, cetacean, Jolly−Seber, misidentification, optimization, stock assess-
ment

INTRODUCTION

Several legal acts and international agreements mandate that
wildlife management agencies regularly assess populations. For
example, the US Marine Mammal Protection Act (MMPA)
directs the National Marine Fisheries Service (NMFS) to assess
every marine mammal population (or stock) in US waters every
3 years. This regular monitoring helps inform the conservation
and management of each stock. For example, NMFS might list
a stock as strategic if an assessment shows that it is declining or
that the amount of fisheries bycatch exceeds its potential biolog-
ical removal (i.e., the amount of human-caused mortality that it
could annually sustain and recover) (Bettridge, 2023; Punt et al.,
2020; Wade, 1998). Listing a stock as strategic has important
management consequences, such as creating a take reduction
plan for minimizing fisheries bycatch and any other harms.
Of course, regular population assessments are also important
for the conservation of species other than marine mammals.
The US Endangered Species Act mandates that the Fish and
Wildlife Service, or NOAA Fisheries, regularly assess species
on the Endangered Species List. Outside the United States, the
EU Birds Directive requires that member states regularly assess
populations of protected bird species in their territory. Addi-
tionally, the EU Marine Strategy Framework Directive (MSFD)
relies on population assessments and monitoring programs to
show that member states have achieved or are maintaining good
environment status, a primary goal of the MSFD, across the EU
(Authier et al., 2017). Internationally, population assessments
underpin the International Union for Conservation of Nature
Red List, which complements the acts and agreements above by
shedding light on the status of populations and the risks that
they face globally (Braulik et al., 2023).

Population assessments typically include an abundance esti-
mate, that is, an estimate of the total number of animals in the
population. For example, the MMPA requires an estimate of the
minimum population size (Nmin) to, among other things, esti-
mate potential biological removal (Bettridge, 2023). For species
with individually identifying marks—such as several species of
cats, whales, and dolphins—researchers can estimate abundance
with capture-recapture and photographic identification (photo-
ID). Capture-recapture with photo-ID has been applied in many
contexts, including camera-trapping surveys of terrestrial mam-
mals (Royle et al., 2009) and shipboard surveys of cetaceans
(Hammond et al., 2021). The main advantage of photo-ID is
that it allows researchers to apply capture-recapture techniques
without having to physically mark animals. As such, agencies can

estimate abundance and thereby inform population assessments
without invasively handling animals.

Capture-recapture via photo-ID, however, requires process-
ing considerable quantities of photographic data, which can
be time-consuming. For example, Tyne et al. (2016) estimated
that data processing for a 2-year study of spinner dolphins
(Stenella longirostris) cost over 4000 h of labor. This intensive
labor partly stems from the need to compare images from each
sampling occasion with the reference set, which contains every
image of every known individual (Table 1). To facilitate this
step, researchers have developed several individual identifica-
tion algorithms (hereafter, ID algorithm), building off recent
advancements in computer vision and artificial intelligence (AI)
(e.g., Bergler et al., 2021; Cheeseman et al., 2021; Maglietta et al.,
2020; Miele et al., 2021; Schneider et al., 2019). Most of these
ID algorithms are partially automated, in that they estimate
the similarity between the individual in the query image and
every individual in the reference set (Figure 1). Then, a user

TABLE 1 Terms used in automated identification of individual animals
and their definitions.

Term Definition

False negative designating the individual in the query image as a new
individual when the individual has already been
identified, effectively splitting its capture history

False positive mistaking the individual in the query image for another
individual in the dataset, effectively blending 2 capture
histories

ID algorithm individual identification algorithm

Misidentification incorrect assignment of an identity to an individual

New individual determination that individual in the query image is
distinct from all individuals that have already been
identified

Partially automated ID algorithm estimates similarity, then human identifies
individual

Query image image containing an individual whose identity we wish to
know

Reference set every image of every known individual

Similarity score ID algorithm’s estimate of the similarity between 2
individuals

Suggested matches most similar individuals in the dataset, listed in order, to
the individual in the query image

Truly automated ID algorithm estimates similarity and identifies
individual
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FIGURE 1 Example output from an individual identification (ID) algorithm (in this case, AnyDorsal) with Antarctic killer whales (Orcinus orca). The identities
of the individuals in the 2 query images is needed. Suggested matches is an ordered list of the closest individuals in the dataset based on similarity score. In both cases,
the individual’s true identity is the second suggested match; therefore, k = 2. The new-individual threshold for AnyDorsal is 0.5 (dotted line). Truly automated ID
algorithms insert new individual in the suggested matches at this threshold. In this case, a truly automated ID algorithm would have produced a false positive with
the first query image and a false negative with the second.

examines the most similar individuals from the reference set
and decides whether one of them matches the individual in the
query (we refer to this ordered list of most similar individuals as
suggested matches). If not, the user adds the individual in ques-
tion to the dataset as a first capture. Some ID algorithms have
been designed for true automation, in that they can make this
decision without human intervention (Cheeseman et al., 2021;
Maglietta et al., 2020; Patton et al., 2023). The wide variety of
ID algorithms and their different designs create several ques-
tions for practitioners. Are these algorithms effective enough
that they can be truly automated? If not, how many suggested
matches should practitioners inspect (Moore et al., 2022)? At
one end of the spectrum, the user could only inspect the ID
algorithm’s first suggested match. At the other end of the spec-
trum, they could inspect every suggested match, that is, every
individual in the dataset. Inspecting fewer suggested matches, or
none in the case of true automation, would further reduce the
labor associated with population assessments. Inspecting fewer,
however, may lead to more misidentifications.

Misidentifications corrupt capture histories, potentially vio-
lating assumptions and biasing demographic estimates from
capture-recapture models. For instance, capture-recapture mod-
els assume that “marks are neither lost nor overlooked, and are
recorded correctly” (Williams et al., 2002). This is a challeng-
ing assumption for photo-ID because any ID method—be it
a truly automated ID algorithm, a human identifying animals
with a partially automated ID algorithm, or a human manually
identifying animals—might misidentify individuals. Yoshizaki
(2007) classified 2 main types of misidentifications with photo-
ID, which we refer to as false negatives and false positives.
False positives occur when the ID method mistakes one indi-

vidual for another, resulting in a recapture being moved from
one capture history to another. False negatives occur when the
individual in question has already been identified but the ID
method fails to recognize it, thereby adding an erroneous new
individual to the dataset. Both types of misidentifications can
bias estimates of survival (Morrison et al., 2011; Rakhimberdiev
et al., 2022; Tucker et al., 2019) and abundance (Ashe & Ham-
mond, 2022; Bonner et al., 2016; Carlson et al., 1990; Johansson
et al., 2020; Lukacs & Burnham, 2005; McClintock et al., 2014;
Schofield & Bonner, 2015; Stevick et al., 2001; Urian et al., 2015;
Yoshizaki, 2007; Yoshizaki et al., 2009). As such, ID algorithms
present practitioners with a challenge—propagating misidentifi-
cations at a large scale—and an opportunity—reducing the cost
of population assessments.

We explored several strategies for generating capture histories
with an ID algorithm. We evaluated trade-offs between labor
costs and estimation error—defined as the bias or variance or
both of parameter estimates or assessment metrics—in a hypo-
thetical population assessment. To that end, we conducted a
simulation study parameterized with the misidentification rates
from 39 photo-ID datasets representing 24 cetacean species.
Although several of these datasets were not created for capture-
recapture, the breadth of datasets provided a wide range of
misidentification rates and dataset sizes that could be consid-
ered realistic and a wide range of species from which to draw
inference. We fed the simulation results into a custom, multi-
objective optimization tool to discern the optimal strategy for
each dataset (Pease et al., 2021; Sanderlin et al., 2014). Our
strategies included choosing between truly and partially auto-
mated photo-ID and, in the case of the latter, choosing the
number of suggested matches to inspect. We did not consider
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FIGURE 2 Our approach to evaluating strategies for generating capture histories with an identification (ID) algorithm (dataset, 1 of 39 photo-ID datasets of
cetaceans; Nmin, minimum population size; CBDO-0, one of the photo-ID datasets [in this case, a catalog of common bottlenose dolphins from Scotland]; POPAN,
a parameterization of the Jolly−Seber model). False negatives are produced when an individual is resighted but erroneously logged as a first capture. Illustration
courtesy of NOAA Fisheries.

the case of manual photo-ID, although this is also prone to
misidentifications (Barlow et al., 2011; Johansson et al., 2020;
Morrison et al., 2011). We estimated the misidentification rates
from a multispecies ID algorithm (Patton et al., 2023) for each
dataset under each strategy to demonstrate how practitioners
can readily compute these rates for a generic ID algorithm. To
explore these trade-offs, we narrowly defined the context of
our hypothetical population assessment. This entailed building
capture histories with an ID algorithm for a one-off, open pop-
ulation capture-recapture study in which we used a Jolly−Seber
model (Jolly, 1965; Seber, 1965), specifically the parameteri-
zation developed by Schwarz and Arnason (1996) known as
POPAN. Our goal was to provide insight into the consequences
of different strategies for a range of species and to develop a
framework for practitioners to evaluate trade-offs as we enter a
new era of AI for population assessments.

METHODS

The work flow for our analyses is in Figure 2; each plot rep-
resents a subsection of the methods. To start, we calculated
misidentification rates for 39 photo-ID datasets under 6 strate-
gies (a) (notation defined in Table 2). These included true
automation and partial automation, where the latter varied by
the number of suggested matches inspected. We considered
a ∈ [0, 5, 10, 15, 20, 25], where a = 0 was true automation
and a > 0 was partial automation. For example, with a = 5,
the first 5 suggested matches were inspected. To evaluate the
strategies, we simulated 100 capture histories for each strat-
egy and dataset from an open population capture-recapture
model, specifically, a Jolly−Seber model (POPAN parameteri-
zation). Then, we corrupted these capture histories according
to the misidentification rates previously computed for each
strategy and each dataset (Figure 2). We estimated apparent sur-
vival 𝜙, the superpopulation size N , and, subsequently, Nmin
from each simulated history with a Bayesian Jolly−Seber model

and calculated each estimate’s error by dataset and strategy
(Figure 2). We estimated the cost of each strategy, in terms
of labor effort, for each dataset. Finally, we used a custom
optimization tool to explore trade-offs between cost and estima-
tion error to discern the optimal strategy (a∗ ) for each dataset
(Figure 2).

We had to set, a priori, dozens of values (hyperparameters)
for the simulation and optimization (see Appendix S1 for the
values and thought process behind them). Whenever possible,
we tried to use information from the 39 photo-ID datasets to
set these values, with the intention to maximize the ecological
realism and relevance to future population assessments. Readers
can use the corresponding GitHub repository to replicate our
analysis or customize the code to better match their situation
(https://github.com/philpatton/autocapture).

Estimating misidentification rates

To capture a breadth of plausible misclassification rates and
dataset sizes and a diversity of species, we used the cetacean
photo-ID datasets described in Patton et al. (2023). These
datasets were curated to develop a multispecies ID algorithm,
which we refer to as AnyDorsal, for dorsal images of cetaceans
(Patton et al., 2023). AnyDorsal is a convolutional neural net-
work that relies on ArcFace, a loss function designed for facial
recognition, and transfer learning. Patton et al. (2023) describe
the overall predictive performance of AnyDorsal, the truly auto-
mated version, for each of the 39 datasets in terms of mean
average precision (MAP). The MAP indicates the performance
of an ordered set of predictions, in our case, the suggested
matches (d ) (Table 2). Precision is the reciprocal of the position
(k) of the true identity in d . In other words, if first prediction
is correct, that is, k = 1, then the precision is 1/1 = 1. If the
second prediction is correct, that is, k = 2, then the precision is
1/2 = 0.5. If the fifth prediction is correct, that is, k = 5, then
the precision is 1/5 = 0.2 (Patton et al., 2023). Precision usu-

https://github.com/philpatton/autocapture
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TABLE 2 Definitions for notation used in capture-recapture,
misidentification, and photo identification.

Notation Definition

General

i index for the photo-ID dataset, i ∈ [1, 2, … , 39]

a strategy (i.e., number of suggested matches inspected,
a ∈ [0, 5, 10, 15, 20, 25])

j index for query image j

Nmin minimum population size

R number of replicates in the simulation

r index for replicate in the simulation

di, j ordered set of most similar individuals for query image j of
dataset i

ki, j position of the true identity in di, j for query image j

Capture-recapture model

Ym,t binary variable indicating capture of individual m on
occasion t

t index for sampling occasion

T number of sampling occasions

m index for individual in capture history

n index for alternative individual in capture history

𝜙 apparent survival probability

b vector of true entry probabilities (also known as PENT)

Ni superpopulation size for dataset i

pi capture probability for dataset i

Misidentification

FPi,a empirical rate of false positives for dataset i and strategy a

FNi,a empirical rate of false negatives for dataset i and strategy a

𝛼i,a rate of misidentifications from evolving marks (type of false
negative)

𝛾i,a rate of misidentifications from ghosts (type of false
negative)

𝛿i,a rate of false positive misidentifications

em,t type of recapture: correct, false positive, ghost, or mark
change

q index for erroneous individual resulting from false negative

Optimization

RBIAS(𝜃) relative bias of an estimate 𝜃

NE Nmin error

Ci,a cost of strategy a for dataset i

Li,a loss associated with each strategy a and dataset i

a∗
i

optimal strategy for dataset i, that is, the strategy with the
lowest loss

w𝜃 , wC weights attributed to estimation error 𝜃 and cost,
w𝜃 + wC = 1

ally has a cutoff. In this case, the cutoff was 5, meaning that the
precision was 0 for any k > 5. The MAP was the mean of the
precision across the dataset.

Our goal was to translate these precision scores into misiden-
tification rates, namely, false positive and false negative rates,
for each dataset under each strategy (Appendix S1). To do so,

we split each dataset into 2 parts, following the exact training
and test splits from Patton et al. (2023). This left roughly two-
thirds of each dataset as a reference set, which contained images
of known individuals, and one-third of each dataset as a query
set, which contained images of known and new individuals. For
every image in the query set, we used AnyDorsal to produce
25 suggested matches from the reference set. We used the truly
automated version of AnyDorsal, which inserts “new individ-
ual” into the suggested matches (Patton et al., 2023) (Figure 1).
This gives the model the ability to predict new individual, which
is important for evaluating the a = 0 strategy. This step can be
skipped if a partially automated ID algorithm is being evaluated.
For each query image, we classified first a suggested matches,
d1 … da, as either a correct classification, false positive, or false
negative (Appendix S1). Our classification scheme attempted to
simulate the situation in which an experienced biologist is iden-
tifying animals with an ID algorithm. Appendix S1 describes
this classification scheme and an alternative (also see “Discus-
sion” and Appendix S2). Regardless of the method, computing
misidentification rates allowed us to determine the downstream
effects of different strategies for generating capture histories
with an ID algorithm.

Jolly−Seber data

We simulated R = 100 capture histories from a Jolly−Seber
model for each dataset (i) and each strategy with Python. For the
Jolly−Seber model, simulating a capture history requires setting
the number of sampling occasions T , the superpopulation size
N , the apparent survival probabilities 𝜙, the capture probabili-
ties p, and the entry probabilities b. We used values that would
be plausible for a Jolly−Seber study of a cetacean (see Van Cise
et al., 2021 for a delphinid example), although capturing all 24
species’ life histories and all possible sampling designs would be
intractable. For every dataset and strategy, we used 10 sampling
occasions (T) and an apparent survival probability of 𝜙 = 0.9,
which was constant across sampling occasions (Van Cise et al.,
2021). We set the initial entry probability to b0 = 0.35. Because
the entry probabilities must sum to 1, we set the remaining entry
probabilities to bt≠0 = (1 − b0) ∕(T − 1). We allowed N and p

to vary by dataset in a scheme described in Appendix S1.

Misidentification process

We randomly corrupted the true Jolly−Seber histories with
misidentifications through a custom process, which synthe-
sized several recent advances in misidentification. Specifically,
we accounted for false positives (Bonner et al., 2016), a false
negative model for mark changes (also known as evolving
marks; Yoshizaki et al., 2009), and a false negative model for
ghosts (Link et al., 2010). Ghosts and mark changes are 2
flavors of false negative that differ in their effect on sub-
sequent recaptures after the misidentification. Our synthesis
produced the following set of assumptions: misidentifications
occur only on recaptures; individuals can only be involved
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with 1 event—false positive, ghost, mark change, or correct
identification—per occasion; recaptures are classified as mark
changes with probability 𝛼, ghosts with probability 𝛾, false
positives with probability 𝛿, or correct identifications with prob-
ability 1 − (𝛼 + 𝛾 + 𝛿); false positives result in allocating the
recapture from individual m to individual m′; mark changes
result in adding an erroneous new individual to the capture
history, and subsequent recaptures are allocated to the new,
erroneous individual; ghosts result in adding an erroneous new
individual to the capture history, and subsequent recaptures are
allocated to the correct individual.

In other words, when individual m was recaptured at time
t , we classified the recapture type with a categorical distribu-
tion, em,t ∼ Categorical(𝜋i,a ), where 𝜋i,a = [𝛼i,a, 𝛾i,a, 𝛿i,a, 1 −
( 𝛼i,a + 𝛾i,a + 𝛿i,a )]. Each cell probability in 𝜋 corresponds to
a recapture type: false negative (mark change), false negative
(ghost), false positive, correct classification. If a recapture was
classified as correct em,t = [0, 0, 0, 1], that is, no misidentifica-
tion was made, we left Ym,t unchanged, where Ym,t is a binary
variable representing the capture of individual m at time t . If the
recapture was a false positive, em,t = [0, 0, 1, 0], we set Ym,t = 0
and Ym′,t = 1, where m′ is a generic index for the mistaken-
with individual. If the recapture was classified as one of the
2 types of false negative, we set Ym,t = 0, created a new all
zero history at index q, then set Yq,t = 1. If the false nega-
tive was caused by a mark change em,t = [1, 0, 0, 0], any Ym,t+ =
1 were allocated to Yq,t+. If the false negative resulted in a
ghost em,t = [0, 1, 0, 0], Ym,t+ remained unchanged. The code
for the misidentification process is at miss_id.py in this article’s
corresponding repository.

We set 𝛿i,a for each dataset and strategy as the total num-
ber of false positive query images. These images were classified
with the scheme described in Appendix S1, and 𝛿i,a was divided
by the total number of query images. To set 𝛼i,a and 𝛾i,a, we
first calculated the false negative rate for each dataset and strat-
egy. We defined the false negative rate as the number of false
negative query images—which we classified with the scheme
described in Appendix S1—divided by the total number of
query images. Without prior knowledge of the cause of the
false negatives, we set both 𝛼i,a and 𝛾i,a to one-half of the false
negative rate.

Estimating parameters and their error

We estimated N , b0, p, and 𝜙 from each set of simulated cap-
ture histories with a Bayesian formulation of the Jolly−Seber
model in PyMC (Abril-Pla et al., 2023). For speed, we used a
marginalized version of the model (McCrea & Morgan, 2015;
Yackulic et al., 2020). We modeled the probabilistic param-
eters as constant, with the following prior distributions: p ∼

Uniform(0, 1), 𝜙 ∼ Uniform(0, 1), b0 ∼ Uniform(0, 1), where
bt≠0 = (1 − b0) ∕(T − 1) and

∑
b = 1. This corresponds to

model p(⋅), 𝜙(⋅), b(⋅) in the dot notation of capture-recapture
(Williams et al., 2002). To permit the use of the No-U-Turn
Sampler (NUTS) version of Hamiltonian Monte Carlo, we
used a flat prior for N , essentially, N ∼ Uniform(−inf, inf)

(Hoffman & Gelman, 2014). This has the unfortunate side
effect of treating N as a continuous variable. We believed
this disadvantage, however, was outweighed by the greater
sampling efficiency of the NUTS algorithm relative to the
Metropolis−Hastings sampler (Monnahan et al., 2017). We fit
each model with the version of the NUTS offered by PyMC.
We simulated the model with 4 chains, 5000 tuning draws, and
10,000 post–tune draws. We checked for convergence with the
Gelman–Rubin statistic (Gelman & Rubin, 1992) and by mon-
itoring divergent transitions from the sampler. We calculated a
derived quantity, the minimum population size, with the pos-
terior statistics of N . The minimum population size (Nmin) is
a required component of stock assessment reports under the
US MMPA (Bettridge, 2023; Wade, 1998). Following guidelines
from the US Department of Commerce (Bettridge, 2023), we
calculated Nmin as,

Nmin,r =
N̂r

exp

(
0.842

√
log

(
1 + CV

(
N̂
)2

r

)) , (1)

where N̂ is the posterior mean of N for the replicate r and
CV(N̂ )

r
is the posterior coefficient of variation of N̂r .

We calculated estimation error with 2 functions: the relative
bias (RBIAS) and a custom function we referred to as Nmin
error (NE) (Sanderlin et al., 2014) (see below). Relative bias was
used to compute the bias of an estimate, scaled by the estimate’s
true value, which helped with interpretability. For example, a
relative bias value of 0.1, meant that we overestimated the
parameter by 10%. We calculated RBIAS as,

RBIAS (𝜃) =
(1∕R)

∑R

r=1

(
�̂�r − 𝜃

)
𝜃

, (2)

where R = 100 is the number of replicates, �̂�r is the posterior
mean estimate of the parameter of interest 𝜃 in the r th replicate,
and 𝜃 is the true value of the parameter for the dataset (Sander-
lin et al., 2014). We calculated estimation error for Nmin with the
following custom function (akin to hinge loss):

NE =
(1∕R)

∑R

r=1 max
(
0, Nmin,r − N

)
N

. (3)

The NE does a better job of calculating estimation error for
Nmin because it is unidirectional. That is, NE only penalizes
Nmin when Nmin exceeds the true population size N . It is also
relative, meaning that an NE of 0.05 suggests that, on average,
N̂min exceeded the true population size N by 5%. Overestimat-
ing Nmin like this could have grim conservation consequences
because, in the context of US stock assessments, Nmin is used
to calculate potential biological removal.

Finally, we were interested in which rate—that is, the false
positive rate or the false negative rate—was driving the RBIAS
of the superpopulation size N and the apparent survival 𝜙
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parameters. To that end, we fitted 2 linear models, one for each
parameter, with the false negative rate and the false positive
rate predicting the parameter’s relative bias, that is, RBIAS(𝜃) ∼
Normal(𝛽0 + 𝛽FNFNi,a + 𝛽FPFPi,a, 𝜎𝜖 ). The 𝛽 estimates indi-
cated how each rate affects the relative bias of each estimate in
terms of strength (magnitude of 𝛽) and direction (the sign of 𝛽).

Optimization

We identified the optimal strategy for each dataset given the cost
and estimation error associated with each strategy. We defined
cost in terms of labor effort, specifically, the number of iden-
tities that would have to be inspected under each strategy for
each dataset (Appendix S1). To find the optimal strategy, we
used a loss function (L) that mathematically incorporated both
cost and estimation error. Then, we sought the optimal strategy
for each dataset that minimized the loss. There are several ways
to construct such a loss function (Conroy & Peterson, 2012;
Pease et al., 2021; Sanderlin et al., 2014). For simplicity and gen-
erality, we used a weighted sum of cost and estimation error of
Nmin (NE),

Li,a = Ci,a wC + NEi,aw𝜃, (4)

where Ci,a is the cost of each strategy for each dataset (see
below), wC is the weight attributed to cost, NEi,a is the Nmin
error (Equation 3), and w𝜃 is the weight attributed to Nmin error.
For the optimization, we focused on the estimation effort for
Nmin because Nmin is important to stock assessments generally
and the US MMPA specifically. We defined optimal strategy for
each dataset as a∗i = arg min

a
( Li,a ), that is, the strategy with the

lowest loss for each dataset.

RESULTS

In general, true automation was optimal, a∗ = 0, for datasets
where the algorithm matched images well, that is, the datasets
with a high MAP. For example, for the melon-headed whale
(Peponocephala electra) dataset (MHWH-0) (Figure 3), the Nmin

error declined as the number of matches inspected increased
(NE0 = 0.037 to NE25 = 0.004) but these gains were out-
weighed by the increased cost (C0 = 0 to C25 = 0.11). As such,
the total loss increased from L0 = 0.037 to L25 = 0.114. This
was also true for the common bottlenose dolphin (Tursiops trun-

catus) dataset from Scotland (CBDO-0), for which the decreased
Nmin error (NE0 = 0.047 to NE25 = 0.028) was not worth the
increased cost (C0 = 0 to C25 = 0.37) (Figure 3). This pattern
held for 12 of the 15 highest MAP datasets (Figure 4). The
exceptions were small datasets like that of Red Sea spinner dol-
phin (Stenella longirostris) (dataset SPDO-0), pygmy killer whale
(Feresa attenuata) (PKWH-0), and Hawaiian short-finned pilot
whale (Globicephala macrorhynchus) (SFPW-2), which had 110, 49,
and 206 query images, respectively (see Appendix S3.1 for codes
for each dataset).

As the overall MAP score decreased, the optimal number of
suggested matches tended to increase. For example, the Nmin
error for the fin whale (Balaenoptera physalus) dataset (FIWH-
0) decreased from NE0 = 0.18 to NE20 = 0.052 (Figure 3).
Essentially, this corresponded to a 13-percentage-point drop,
from Nmin exceeding N by 18% to 5%. This decline offset
the added cost, from C0 = 0 to C20 = 0.12. As such, the opti-
mal number of matches checked for this dataset was 20. Similar
patterns held for the Bryde’s whale (Balaenoptera edeni) dataset
(BRWH-0), the Adriatic common bottlenose dolphin dataset
(CBDO-1), the Commerson’s dolphin (Cephalorhynchus commer-

sonii) dataset (CMDO-0), and the goose-beaked whale (Ziphius

cavirostris) dataset (CUBW-0), to name a few (Figure 4). Excep-
tions to this pattern included datasets with many query images,
such as that of dusky dolphin (Lagenoryhnchus obscurus) (DUDO-
0) and the global humpback whale (Megaptera novaeangliae) dataset
(HUWH-1). In general, the estimates of cost varied widely
across datasets (Appendix S1). Two datasets, the Quebec bel-
uga (Delphinapterus leucas) (BELU-1) and HUWH-1, were much
more costly than the others. They both contained many more
images than the others. As expected, the cost function was
flatter between a = 5 and a = 25 for datasets with higher MAP.

The Nmin error tended to decrease as a increased (Figures 3,
4, & Appendix S3.4). For some datasets, such as MHWH-0 and
FIWH-0, this decrease was monotonic (Figure 3). This mono-
tonic decline was present for many datasets where some degree
of partial automation was optimal, a∗ > 0, for example, for
FIWH-0, BRWH-0, CBDO-1, HUWH-1, CMDO-1, CUBW-
0, both blue whale (Balaenoptera musculus) datasets (BLWH-0
and BLWH-1), and the southern right whale (Eubalaena aus-

tralis) dataset (SRWH-0). For others, such as CBDO-0, Nmin
error actually increased from a = 0 to a = 5. True automation
was optimal, a∗ = 0, for several of these datasets, includ-
ing Marianas short-finned pilot whale dataset (SFPW-1), both
killer whale (Orcinus orca) datasets (KIWH-0 and KIWH-1),
the gray whale (Eschrichtius robustus) dataset (GRWH-0), the
sei whale (Balaenoptera borealis) dataset (SEWH-0), both beluga
datasets (BELU-0 and BELU-1), and the Icelandic common
minke whale (Balaenoptera acutorostrata) dataset (COMW-0). For
some datasets, NE remained persistently high, even at a = 25
(Figure 4 & Appendix S3.4).

The Nmin error closely tracked the false negative rate
(Figure 3). At a more basic level, the false negative rate closely
tracked RBIAS of the superpopulation size N . The linear
model with the false negative and false positive rates predict-
ing RBIAS(N ) had an R2 = 0.98, with 𝛽FN = 2.56 and 𝛽FN =
0.236 (Appendix S3.2). A 𝛽FN of 2.56 implied that increasing
the false negative rate by 0.02 roughly corresponded to increas-
ing the relative bias of N by 0.05. As such, the patterns observed
for NEi,a were mirrored by the false negative rate. For some
datasets, the false negative rate decreased monotonically as a

increased (Appendix S3.5). For others, the false negative rate
increased from a = 0 to a = 5 and then decreased monotoni-
cally from a = 5 to a = 25. For some datasets, the false negative
rate remained persistently high, even at a = 25. The false pos-
itive rate fell to zero for most datasets at a = 5. At a = 0, the



8 of 13 PATTON ET AL.

FIGURE 3 The false negative rate, Nmin error, and cost as a function of each strategy for generating capture histories with an individual identification
algorithm. Three example datasets are represented: melon-headed whale (MHWH-0), common bottlenose dolphin (CBDO-0), and fin whale (FIWH-0) (a∗, optimal
strategy [lowest combined Nmin error and cost Ci,a]; MAP, measure of matching performance of the algorithm; gray numbers on y-axis, scaled cost; bar colors,
optimal strategies as seen in Figure 4). Animal illustrations courtesy of NOAA Fisheries.

median false negative rate was 0.05 and the median false positive
rate was 0.09 (Appendix S3.6).

Of the 4 Jolly−Seber parameters, superpopulation size N was
most sensitive to misidentifications, whereas apparent survival 𝜙
was the least sensitive (Figure 5 & Appendices S3.2 & S3.7). The
linear model with the false negative and false positive rates pre-
dicting RBIAS(𝜙) had an R2 = 0.90, with 𝛽FN = −0.263 and
𝛽FP = 0.194 (Appendix S3.2). The 𝛽FN for this linear model
was an order of magnitude smaller than that of the N model.
Similarly, the signs of the coefficients indicate that the positive
bias in 𝜙 grows with an increasing false positive rate, whereas
the negative bias in 𝜙 grows with an increasing false negative
rate. All told, the strategies had less of an influence, in absolute
terms, on apparent survival 𝜙 than the superpopulation size N

(Figure 5 & Appendix S3.7).

DISCUSSION

In general, true automation was optimal (a∗ = 0) for datasets for
which the ID algorithm matched images well in terms of MAP
(Figure 4; also, MHWH-0 and CBDO-0 in Figure 3). Often,
for these datasets, Nmin was estimated well under all strategies

(Appendix S3.4), meaning that cost dictated the decision pro-
cess (Figure 4). Some form of partial automation was optimal
(i.e., a∗ > 0) for many lower performing datasets (Figure 4). In
general, the estimate of the superpopulation size N , a compo-
nent of Nmin, was more sensitive to misidentifications than the
estimate of the apparent survival 𝜙 (Figure 5). The relative bias
in the superpopulation size N closely tracked the false nega-
tive rate (Figure 5), which tended to decline as the number of
suggested matches inspected increased (Figure 3).

We recommend that agencies wishing to automate photo-ID
for population assessments evaluate their matching algorithm
beforehand. Our results suggest that a 2% increase in the false
negative rate, all else being equal, translated to a 5% increase in
the relative bias of the superpopulation size N (Appendix S3.8).
Although the specific numbers associated with this increase, for
example, the effect of the false negative rate FN on the rela-
tive bias of N , 𝛽FN, were likely unique to our simulation setup
and misidentification assumptions, the strong effect and strong
correlation between FN and the relative bias in N reflected
a well-known finding within the capture-recapture literature
(Carlson et al., 1990; Hammond, 1986; Johansson et al., 2020;
Lukacs & Burnham, 2005; Stevick et al., 2001; Yoshizaki, 2007).
Many agencies may wish to cap the expected relative bias in
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FIGURE 4 Loss (i.e., combined estimation error and cost) for each cetacean photo identification dataset. Each bar represents a strategy for generating capture
histories with an individual identification algorithm (dot near 0.5, optimal strategy [lowest combined cost Ci,a and Nmin error]; color gradient from dark to light
corresponds to inspecting 0−25 suggested IDs from the algorithm; MAP, measure of matching performance for a dataset [top right on each graph]; graph upper
limit, 0.65; datasets—BELU-1, HUWH-1, BELU-0, COMW-0, and SRWH-0 had strategies for which total loss exceeded 0.65; dataset abbreviations defined in
Appendix S3.2).

N to, say, 0.1, corresponding to a 10% overestimation of the
true abundance N . As such, they would need to ensure that
their matching procedure—be it a truly automated ID algo-
rithm, a human matches images with a partially automated ID
algorithm, or a human manually matching images—produces
false negative matches no more than 4% of the time. To estimate
this percentage, they could test their procedure on a represen-
tative sample of images and count the false negative matches.
A representative sample might include the appropriate number
of recaptured individuals to new individuals to the dataset or
the appropriate spread of distinctiveness or image quality. The
size of this sample would depend on the false negative rate and
the desired precision of the estimate. For example, the sample
would have to include around 250 images to reach a coefficient
of variation (CV) of 0.3 for a false negative rate of 0.04, assum-
ing the count of false negatives is a binomial random variable
(Appendix S3.9).

Evaluating the matching algorithm by estimating the false
negative and false positive rates would facilitate the use of
our optimization tool without having to conduct a full simu-
lation study. Appendix S2 shows 1 method for doing so for the
Hawaiian pantropical spotted dolphin (Stenella attenuata) dataset
(SPDO-1). The upshot is that, by evaluating the matching algo-

rithm, the user can estimate the false negative and false positive
rates for each strategy and, in turn, estimate the relative bias
of N . The accuracy of this estimate depends on the similar-
ity of their case to our simulation setup and misidentification
assumptions. From here, the user would be able to customize
the optimization process to suit their research and policy goals.
For example, say the user wishes to cap the relative bias in N

to 10%. Further, assume that they have reasonable cost pro-
jections for a suite of strategies a, including true automation
and a set of partially automated alternatives. Then, they simply
need to find the cheapest strategy that produces a relative bias
of N below 10%. That is, they would need to find the cheap-
est strategy that satisfies 0.1 ≤ −0.01 + 2.56 FNa + 0.236 FPa.

Alternatively, they could cap the labor cost associated with
matching at, say, 4000 h, and find the strategy with the lowest
relative bias in N below budget. Finally, if they are worried that
our simulation settings are too different from their proposed
case, they could inform the optimization by simulating data and
estimate the relative bias of N . Customizable simulation code
for CJS and Jolly−Seber models and code for the optimization
is available at https://github.com/philpatton/autocapture.

Although our analysis focused on cetacean datasets, our
approach should apply to other photo-ID-based population

https://github.com/philpatton/autocapture
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FIGURE 5 The estimation error, expressed in terms of relative bias, for 4 parameters from a Jolly−Seber model as a function of the false negative rate (i.e.,
how often an individual was resighted but erroneously marked as a first capture) (dots, a cetacean photo identification dataset and a strategy for generating capture
histories with an individual identification algorithm; strategy, inspecting 0, 5, 10, 15, 20, or 25 suggested identities from an individual identification algorithm). Entry
probability, sometimes referred to as PENT, is a measure of recruitment from the POPAN formulation of the Jolly−Seber model. We held PENT constant across
occasions in this paper; as such, only b0 is listed. A relative bias of −0.05 suggests the parameter is underestimated by 5%.

assessments, such as camera trapping of terrestrial mam-
mals. That said, we might expect the magnitude of 𝛽FN to
differ, depending on the sampling design and the species
being assessed. For example, Gardner et al. (2018) simulated
open-population camera-trapping data with fewer sampling
occasions, T = 5, and a lower apparent survival probabil-
ity, 𝜙 = 0.75, drawing inspiration from a tiger (Panthera tigris)
camera-trapping dataset, which they also analyzed. Under these
conditions, we would expect the magnitude of 𝛽FN to be lower
because with lower survival and fewer occasions, there are fewer
opportunities to misidentify an individual. As such, future users
of our approach should carefully consider a realistic number
of sampling occasions, apparent survival probability, and cap-
ture probability, all of which influence the magnitude of 𝛽FN.
Patton et al. (2023) speculate that the same model structure as
AnyDorsal could be adapted and retrained for multispecies ID
of terrestrial mammals in camera-trapping studies. Should that
effort be successful, researchers could use this framework to
evaluate its performance in terms of population assessments.

Regardless of the taxa being studied, researchers should
carefully consider the misidentification process for their system.
Although our misidentification process should reasonably
approximate many photo-ID studies, there are some limita-
tions. For instance, we did not consider the situation where a
researcher does not find a match in the suggested matches for
the query image and does not mark the individual in the query
image as a first capture. In a sense, the researcher is simply
discarding the query image. Research organizations tend to do
this when the query image is of poor quality (Rosel et al., 2011;

Urian et al., 2015) or there is only 1 image of the individual from
the encounter (Morrison et al., 2011). As such, this strategy
reduces misidentifications, mitigating the issue of ghost individ-
uals, by adding a certainty threshold that must be crossed before
adding a new individual to the dataset. Unfortunately, we did
not have image quality scores or image counts per encounter
for the 39 datasets. As a result, we may have overestimated
the false negative rate for some datasets, particularly those not
designed for capture-recapture (Rosel et al., 2011). Future users
of our approach could tailor the misclassification process to
explore the effect of discarding query images, especially if they
have image quality scores for their images. Even so, Johansson
et al. (2020) experimentally demonstrated that experienced
biologists still misidentify individuals in high-quality images,
creating ghost individuals.

Our simulation sheds light on 2 approaches—on opposite
ends of the spectrum—to partially automated photo-ID. The
first corresponds to a = 1, where the user only inspects the
first suggested match. A user might take this approach with a
high-performance ID algorithm that effectively separates indi-
viduals, for example, where the typical list of suggested matches
[d1, d2, d3] is something like [A,B,C ] with corresponding simi-
larity scores [0.81, 0.21, 0.19], and the true identity in the query
image is A. Occasionally, however, the ID algorithm might sug-
gest d = [B,C ,D] with the same similarity scores. In other
words, the ID algorithm occasionally misjudges strong matches,
strongly suggesting 2 distinct individuals are the same. The
a = 1 strategy seeks to efficiently catch these misidentifications,
thereby minimizing false positives. This strategy, however, may
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increase the false negative rate, which, in our simulation, was the
more problematic misidentification rate. For several datasets,
the false negative rate increased from a = 0 to a = 5 (Figure 3
& Appendix S2). Moreover, for every dataset, the false nega-
tive rate increased from a = 0 to a = 1 (this analysis required
a slight modification to the classification scheme [Appendices
S1 & S3.10]). The increase from a = 0 to a = 1 happened
because some of the false positives that were prevented at a = 1
became instead false negatives whenever the individual in the
query image had already been identified. For the spotted dol-
phin dataset PSDO-1, which had an overall MAP of 0.90, the
false negative rate at a = 0 was 2.0%. At a = 1, the false neg-
ative rate was 6.5%, and at a = 5, it was 1.1%. This roughly
translated to a drop in relative bias in N from 17% to 3%
from a = 1 to a = 5 (Appendix S2). For the highest perform-
ing datasets, MAP > 0.95, the increase in the false negative rate
from a = 0 to a = 1 was less pronounced, often around 2 per-
centage points (Appendix S3.10). As such, users may want to
reserve the a = 1 strategy for the highest performance ID algo-
rithms and datasets. Nevertheless, any strategy should be vetted
by first evaluating the matching algorithm on a sample of query
images (Appendix S2). Further, any strategy should be designed
to match the goals of the study.

The second strategy—at the other end of the spectrum—
could be called a = ∞. The idea with this strategy is to continue
inspecting suggested matches until a match is found or the end
of the dataset is reached. This strategy, in effect, ensures that the
false negative rate and false positive rate reach zero regardless
of cost. As such, this may be a preferred strategy for resource-
rich organizations, for datasets that lack a reliable ID algorithm,
or for small datasets. Our results showed some evidence for
this approach for certain datasets. For example, a = 25, the
highest a for this study, was optimal for several of the small-
est datasets. Continuing to the end of the dataset is essentially
free, so why not? One can also evaluate this strategy in terms
of the a value that would be necessary to reach a threshold
value for the false negative rate, say, 4%. For 9 of the 13 lowest
matching performance datasets, MAP < 0.85, the a value was
over 50. For these datasets, a = ∞ could be a worthy strategy.
However, this approach might be overkill for better perform-
ing datasets. Twenty-one of the 26 highest performing datasets
(MAP > 0.85) reached the false negative rate of 4% by a = 10.

It is difficult to identify the species and dataset characteristics
that would predict a∗ for the ID algorithm we used in this study.
Patton et al. (2023) identified several correlates with the overall
MAP performance, which in turn correlated with our measures
of estimation error, albeit imperfectly (Figures 3, 4, & Appendix
S1). In fact, the third worst performing dataset in terms of MAP
was the goose-beaked whale dataset CUBW-0, yet the abun-
dance estimator for this dataset performed admirably under
several scenarios, reaching a relative bias of 7.6% by a = 25.
This was roughly the same relative bias as the SPDO-1 dataset at
a = 25 (RBIAS = 7.8%, MAP = 0.95). These exceptions aside,
the MAP value did roughly track estimation error. As such,
the recommendations from Patton et al. (2023) would likely
translate to our study. Nevertheless, we recommend that users
evaluate their matching procedure beforehand.

One limitation of our study is that we did not explore the
use of capture-recapture models that explicitly account for
misidentification to estimate abundance (e.g., Link et al., 2010)
or survival (Morrison et al., 2011). For some datasets, such as
DUDO-0, GRWH-0, and KIWH-0, this led to highly biased
estimates of Nmin with little variance, ensuring that the cred-
ible intervals did not contain the true value of N (Appendix
S3.4). These strongly erroneous estimates may cause concern,
because Nmin is a critical component of US stock assessments.
We attribute this highly biased estimates to the persistently high
rate of false negatives in the data, even for strategies with high
a. In practice, many stock assessment scientists would either
attempt to minimize the misidentification rates, for example,
by increasing a or explicitly modeling the misidentifications.
There are several of these misidentification capture-recapture
models available to practitioners, depending on the analysis
objective. Appendix S3.3 lists several available misidentifica-
tion models for open or closed models or for false positives or
false negatives. In many cases, it is only possible to deal with 1
misidentification type or objective—abundance or survival—at
a time. For example, we are unaware of any Jolly−Seber models,
where the goal is estimating both survival and abundance, that
incorporate misidentifications. That said, we would be curious
to see whether the conditional model of Morrison et al. (2011),
where the first capture of each individual is set to 0, would work
in a Jolly−Seber context. As far as we know, only models for
ghosts are available in Program Mark.

AI presents scientific and management agencies with both a
challenge and an opportunity. Our study highlights the oppor-
tunity, namely, that when the algorithm matches images very
well, agencies may be able to use AI to reduce labor effort while
minimally increasing estimation error. However, our study
also highlights the challenges. Marginal increases in the false
negative match rate upwardly bias abundance estimates. Such
overestimation could have grim conservation consequences
because stock assessments can be the primary resource for
decision-makers. As such, it is critical that agencies estimate the
false negative rate for their algorithm under different strategies.
This information, along with the framework presented here,
should help managers decide on the best way to implement AI
for population
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